A Fully Discrete Low-Regularity Integrator for the Nonlinear Schrödinger Equation
نویسندگان
چکیده
For the solution of one dimensional cubic nonlinear Schrödinger equation on torus, we propose and analyze a fully discrete low-regularity integrator. The considered scheme is explicit. Its implementation relies fast Fourier transform with complexity $${\mathcal {O}}(N\log N)$$ operations per time step, where N denotes degrees freedom in spatial discretization. We prove that new provides an {O}}(\tau ^{\frac{3}{2}\gamma -\frac{1}{2}-\varepsilon }+N^{-\gamma })$$ error bound $$L^2$$ for any initial data $$H^\gamma $$ , $$\frac{1}{2}<\gamma \le 1$$ $$\tau temporal step size. Numerical examples illustrate this convergence behavior.
منابع مشابه
Breathers for the Discrete Nonlinear Schrödinger Equation with Nonlinear Hopping
We discuss the existence of breathers and lower bounds on their power, in nonlinear Schrödinger lattices with nonlinear hopping. Our methods extend from a simple variational approach to fixed-point arguments, deriving lower bounds for the power which can serve as a threshold for the existence of breather solutions. Qualitatively, the theoretical results justify non-existence of breathers below ...
متن کاملA semi-discrete scheme for the stochastic nonlinear Schrödinger equation
We study the convergence of a semi-discretized version of a numerical scheme for a stochastic nonlinear Schrödinger equation. The nonlinear term is a power law and the noise is multiplicative with a Stratonovich product. Our scheme is implicit in the deterministic part of the equation as is usual for conservative equations. We also use an implicit discretization of the noise which is better sui...
متن کاملVariational solutions for the discrete nonlinear Schrödinger equation
The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial fu...
متن کاملLow Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data
The Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition is considered. Local well-posedness for data u0 in the space b H r (T), defined by the norms ‖u0‖ b Hs r (T) = ‖〈ξ〉 s b u0‖lr′ ξ , is shown in the parameter range s ≥ 1 2 , 2 > r > 4 3 . The proof is based on an adaptation of the gauge transform to the periodic setting and an appropriate varian...
متن کاملPeriodic waves of a discrete higher order nonlinear Schrödinger equation ∗
The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2022
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-022-01786-y